New Geometric Representations and Domination Problems on Tolerance and Multitolerance Graphs
نویسندگان
چکیده
Tolerance graphs model interval relations in such a way that intervals can tolerate a certain amount of overlap without being in conflict. In one of the most natural generalizations of tolerance graphs with direct applications in the comparison of DNA sequences from different organisms, namely multitolerance graphs, two tolerances are allowed for each interval – one from the left and one from the right side. Several efficient algorithms for optimization problems that are NP-hard in general graphs have been designed for tolerance and multitolerance graphs. In spite of this progress, the complexity status of some fundamental algorithmic problems on tolerance and multitolerance graphs, such as the dominating set problem, remained unresolved until now, three decades after the introduction of tolerance graphs. In this article we introduce two new geometric representations for tolerance and multitolerance graphs, given by points and line segments in the plane. Apart from being important on their own, these new representations prove to be a powerful tool for deriving both hardness results and polynomial time algorithms. Using them, we surprisingly prove that the dominating set problem can be solved in polynomial time on tolerance graphs and that it is APX-hard on multitolerance graphs, solving thus a longstanding open problem. This problem is the first one that has been discovered with a different complexity status in these two graph classes. Furthermore we present an algorithm that solves the independent dominating set problem on multitolerance graphs in polynomial time, thus demonstrating the potential of this new representation for further exploitation via sweep line algorithms.
منابع مشابه
A New Intersection Model for Multitolerance Graphs, Hierarchy, and Efficient Algorithms
Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This class of graphs has attracted many research efforts, mainly due to its interesting structure and its numerous applications, while a number of variations of this model has appeared. In particular, one of the most natural generalizations of tolerance grap...
متن کاملOn the signed Roman edge k-domination in graphs
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
متن کاملOn the super domination number of graphs
The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...
متن کاملDomination parameters of Cayley graphs of some groups
In this paper, we investigate domination number, $gamma$, as well as signed domination number, $gamma_{_S}$, of all cubic Cayley graphs of cyclic and quaternion groups. In addition, we show that the domination and signed domination numbers of cubic graphs depend on each other.
متن کاملComponent Based Design of Multitolerance
The concept of multitolerance abstracts problems in system dependability and provides a basis for improved design of dependable systems. In the abstraction, each source of undependability in the system is represented as a class of faults, and the corresponding ability of the system to deal with that undependability source is represented as a type of tolerance. Multitolerance thus refers to the ...
متن کامل